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The Liapunov method is used in the function space to study the vertical oscill- 
ations of a membrane, for nonlinear law of elasticity and finite deformations. 

1. Formulation of the problem. Weassumethatthemembr- 
ane in the undeformed state occupies the region Q in the Oqzs -plane, and is in 
its natural state. The deformation of the membrane consists of uniform stretching al- 
ong the 02, and 03, axes and deflection u along the 0~s -axis, with its bound- 
ary r remaining in the 0++4 -plane, i. e. 

=I = (1 + 4a, t = (1 + e)a,, 38 = u (ar, us, t) (e > 91 (1.1) 
r.4 (@I, Qsr 9 Jr = 0, r = C&z 

We assume that the potential energy of deformation depends only on the principal ex- 
tensions ofthedilatation tensor. The kinetic energy of the membrane is given, in acc- 
ordance with the first assumption, by 

where Q is the surface tension of the membrane, and is assumed constant. From 

(1. I) it follows that the principal extensions of the dilatation tensor have the form 

%=i+e, h, = [(i + e)s + zq + &I” (q = au f 881% us = 6% / aas) 

According to the last assumption, the potential energy of the deformations can be 
written in the form of a functional 

Elul=Jqt)da, E=hp (1.2) 
P 

Here F (5) is a function depending on the properties of the membrane material. In 
particular, when F (%I = %p - (1 f e)s , the problem of membrane oscillations be- 

comes linear (see e. g. [l] 1. The function 
F (5) = b&a + b,g + bO (bl, b,, h, = CO=@ (1.3) 

corresponds to the Hooke’s Law and the function 

1 
F(4)=o 5s+(~+s)*lp+(~ +++s --3]+8[(1 +ePr+&+(*-3f (l,*) 

where a and fi are constants, describes a model of incompressible rubber proposed 
by R Rivlin and D. Saunders [2]. 

The configurational space of the system V is represented by a linear space of 

functions defied on P and vanishing at the boundary 
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V = (u: E [u] < 00, u Ir = 0) 

The properties of the space depend on the form of the function F (8. Thus in (1.3) 
and (1.4) V = W”‘,l (8). In particular, we have 

V = IV: (Q) when F (C) = i b,ck 
lr=o 

The phase space of the system is defined as a straight product of the configurational 
space V and the Hilbert space of velocities H 

H = {u’ : u’ E L, (Q), u’ IF = 0) 

The variational equation of motion of the membrane (the d’Alembert - Lagrange 
principle) is written in the form 

P (u”, 6~) + (VE [u], 6~) - (f, bu) = 0, Vbu E V (1. 5) 

where f (a~, as) denote the external surface forces which we assume to be time in- 
dependent. 

2. Stationary solution and its stability. Equation(l.5) 
has a stationary solution u = u,, E V, which describes the position of equilibrium and 

satisfies the condition 

(VE [u,], bu) - (f, 8~) = 0, Vbu E V (2. 1) 

Let us inspect the stability of the solution UO. The first integral of (1.5) (Energy 
Conservation Law) has the form 

l/pp (n*, u’) + E 14 - U, 4 = E (2.2) 

Replacing in (2.2) u by u+ un, we obtain 

‘lap (u’, n’) + E [ue + 4 - V, uo) - (f, 4 = ~3 (2.3) 

where u is the deviation of the membrane from its position of equilibrium, 
Let us consider, in the phase space of the system, the functional 

@ [u., u] = ‘1s~ (u’, u’) + E [u,, + ul - E luol - (f, 4 (2.4) 

When u = u’ - 0 , the functional (2.4) vanishes, Let us assume that 0 ]u’, ul is 
positivedefinite and bounded in some neighborhood of the zero of the phase space(i, e. 
in terms of the initial notation, in the neighborhood of (b, u,)), and choose it as the 

Liapunov functional the derivative of which is equal to zero by virtue of the equations 
of motion. Thus the stationary solution (2.1) is Liapunov stable [3], the quantity l/so 
(u’, u’) is positive-definite and bounded on the space of velocities ((u’, u’) denotes 
the square of the norm). 

We shall show now that the functional (2.4) is a Liapunov functional for the elast- 
icity laws (1.3) and (1.4). We select the norm of the configurational space w.sO’ (Q) 
in the form 
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L e m m a. If the second Fr&het variation of the functional E [ul is positive- 
definite and bounded in some neighborhood of the stationary solution, i, e. 

J% II u If” d (V’E ]z+J, u) d k, ]I u I/s (k, > o) (2. 5) 

for i] u - UO II < h (II > 0) where 1) - II denotes the norm in the configurational sp- 
ace V, then for /J u]]< h we have 

l/&r II u IF d E Iu + uo] - (VE 1~01, u) - E [uol f ‘l,k, II u 11% (2.6) 

P r o o f. We introduce the function W (z) : [O, 11 -+ R1 defined by the relations 

W(z) = E ]ug + ~1~1 - (VE Iu,], zu) - E [uo] (2.7) 
dW/ dz = (VE [ug + ~1 - VE [u,], u) 

@W/d+= (VBE[uo+~u]u,u) 

If II u II < h then according to (2.5) 

k; 1 u 11” < @W / d+ Q k, [I u If’ (2.8) 

Integrating the inequality (2.8) twice with respect to T and taking inta account the 

relations W (0) = dW (0) / & = 0, we arrive at (2. 6). 
In the case of (1.3). the second Frichet variation of the functional E 1~1 has the 

form 

(VsE[u]u,~)=s I](++ (uis + ZQ) + -$ (crur + ~.A)~ 1 da, 
n 

p = (1 + e)2 + vis + vsa 

Then the following estimate holds: 

[2b, - bi / (1 + e)] II u iI’ d WE [u,b, u) G W, + 3/ah) It u 11’ 

We -press the coefficients b, and bl in terms of the shear modulus 
the transverse compression coefficient m (Poisson’s ratio) [4] as followS: 

b, = Gm / (m - I), b, = 2 (m - e)G / (m - 1) 

G and of 

From this it follows that 26, - b, / (1 + e) > 0 and, according to the Lemma,the 

functional (1.3) is positive-definite and bounded and hence the stationary solution is 

stable. 
We shall show that analogous inequalities also hold for the functional (1.4), Consid- 

er the function W (z) appearing in (2.7) and constructed with help of the functional 

(1.4). We have 

(VE[vlu, 10= 2 a l-(l+;),E~ +@ (1+4”-+ s I[ 1 [ (vlq + v+J da (2.9) 
Q 

(VsE [v] u, u) = 
S{[ w1+w4~+ 

1 
+ 

ia 

B ((I + e)* - $r) ] 2 w + Q)} da, P - (I + e)a + ulz + r2* 

Since k4 >, (1 + d4, the estimate of the second relation of (2. 9) is given by the 

inequality 
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The boundedness of the second variation (2.9) in IV’s1 (Q) follows from the estimate 

From the inequalities (2.10) and (2.11) we conclude that the functional f 2.4) is 
positive-definite and bounded, therefore the stationary solution of (1.5) is Liapunov 
stable. 
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